
Q2Q 1.0.0 User Guide

John Wostenberg

November 2024

Contents
Overview 3

App layout overview . 3
Toolbar . 3
Cue-track grid . 3
Cue editor . 4
Trigger editor . 4
Track editor . 4
Views . 4
Command Palette . 5

Triggers 6
Start trigger . 6
Stop trigger . 6
Fade trigger . 6
Crossfade trigger . 6
Devamp trigger . 7
OSC Trigger . 7

Parameters . 7
Specifying where OSC messages are sent to 7
Examples . 8

Projects 10
Exporting Cue Sheets as CSV Files . 10

Automatic cue naming 11
Substitutions . 11

. 11
$. 11
#n and $n . 11
{value} . 11

Examples . 11

1

OSC API 13
API . 13

Top-level methods . 13
Cue methods . 13

Examples . 14

2

Overview
Q2Q is a real-time, cross-platform cueing system for live performances. You can
use it for all of your sound needs. Q2Q organizes a show across two axes instead
of one: first by cues (in rows), and secondly by tracks (in columns). This is
described in more detail in the section about the cue-track grid.

App layout overview
Toolbar

The toolbar appears at the top of the main window, below the menu bar and
just above the cue-track grid. This includes:

• The “GO” button, which triggers the currently armed cue when pressed
(also triggerable via the space bar).

• The trigger palette, which contains the controls for every trigger type in
Q2Q.

• The default cue name editor, which allows you to edit the default cue name
for on a project-by-project basis (see Automatic cue naming).

• The Infobox, which displays helpful information when you hover over parts
of the application.

Cue-track grid

Q2Q organizes itself in a two-dimensional layout rather than one-dimensionally.
Cues run down the screen, while tracks run across.

Cues represent a set of actions (triggers) to be taken when the cue is taken.
In this way, Q2Q’s “y-axis” can be thought of as corresponding to time: the
lower down you go, the later in the show the cue is. There is a one-to-one
correspondence between “pressing the GO button” and a cue: in other words,
when you press “GO,” exactly one cue will be taken in a completely predictable
fashion. There is no guesswork to determine where the “armed cue” cursor will
end up next, as it is always the cue right after the one just started. To make
more than one thing happen in a cue, you can use tracks and triggers.

Tracks provide a way to organize related triggers/sounds together, and are laid
out in columns. If cues running along the y-axis correspond to time, tracks
running along the x-axis therefore correspond to a spacial (aka organizational)
axis, similar to layers in many other applications (such as Photoshop or Audacity).
For example, you may want to group all the music into a “Music” track and
all the sound effects into another “SFX” track. This allows useful things like
adjusting the levels/panning of the track all together.

3

Cue editor

The cue editor is found on the bottom-left corner of the main window, and
shows you some information about the cue as a whole, such as the cue’s raw and
display names. It also allows you to view and edit notes for the cue, which is a
blob of arbitrary text stored alongside the cue. The cue editor (and therefore
the notes widget) is always visible, no matter what trigger is selected within the
cue, making it useful to convey thing such as cue lines, page numbers, or even
just informational notes about the to the operator. A future version of Q2Q
will have an “Operator View,” which will take heavy advantage of these notes.
It will display information about the next-up cue in a much more condensed
manner, excluding the detailed trigger editor and collapsing tracks down.

Trigger editor

The trigger editor, adjacent to the cue editor, sits on the bottom-right corner
of the main window. Here you will find controls for attributes of the selected
trigger, such as slice points, levels, and OSC parameters, to name a few.

Track editor

The track editor can be found on the rightmost side of the main window, and
displays controls for viewing and editing settings for the selected track. The
output device dropdown allows you to set where the track’s audio will route
to, allowing you to choose from a list of all the detected system devices, from
each supported API. If an unknown device is selected for output (often caused
by disconnecting the device, or by loading the project on a different computer
with different devices connected), the device will show as “offline,” and instead
output to the system default until you change it. The levels control adjusts the
levels for the track as a whole (which get applied after individual sound instance
levels).

On Windows, Q2Q works with WASAPI and ASIO output devices. ASIO devices
work with any number of channels, while WASAPI devices are restricted to 1 or
2 channels. Professional audio interfaces often support exposing themselves to
multiple different Windows audio APIs, so if you want to make full channel use
of your hardware, make sure to select the ASIO version of the device from Q2Q.

On macOS, Q2Q works with any CoreAudio output device, which can support
any number of channels.

Views

There are two views accessible in Q2Q: Designer View, and Operator View; with
Designer View being the default. You can switch between the two under the
View menu, or by the keyboard shortcuts.

Designer View is a detailed workspace suitable for building or making changes
to the project, allowing the full freedom to see all the tracks and the cues as well

4

as edit properties of both. It contains the toolbar, cue-track grid, cue/trigger
editor, and track editor.

Operator View presents a simplified, clutterless view-only experience suitable
for show operators. It collapses the cue-track grid down into a summarized cue
list, displaying information such as the cue name, the triggers in the cue, the
total duration of the cue, as well as notes. It does not display individual tracks.
This makes it easier to tell at a glance exactly what a cue is going to do and
how long it will take to do it. Unlike Designer View, in Operator View, the GO
button is placed prominently at the bottom of the screen, instead of at the top
of the screen.

Command Palette

The Command Palette is a quick way to access functionality from across the
application, and sometimes even special commands. To use it, press Ctrl+K,
type to search for a command, and press enter to execute the selected command.

5

Triggers
A trigger is the smallest discrete unit of action that can be taken by Q2Q. There
are several different kinds of triggers, and a cue can hold many triggers. You
can edit a trigger’s attributes by clicking to select the trigger in the cue-track
grid, and interacting with the trigger editor that appears.

Start trigger
Starts a sound instance loaded from an audio file. When you add a new start
trigger to a show by dragging and dropping, Q2Q will prompt you to pick an
audio file for the trigger.

Start trigger properties include:

• Predelay - A time (in seconds) to wait after the trigger is executed before
starting the sound.

• Levels - Adjusts the initial volume levels of the sound instance.
• Crosspoints - Defines how the sound instance’s channels map to the track’s

output channels. The rows are source channels, and the columns are output
channels.

• Slices - Defines regions within the sound file that may be looped.

Stop trigger
Stops a sound instance if playing.

Fade trigger
Smoothly varies a playing sound instance’s levels to a different configuration
over a specified duration. This can be used to accomplish fade ins, fade outs,
and spacial panning.

The Pan Law dropdown determines which interpolation algorithm to use to vary
the volume levels. For example, the linear pan law uses a linear formula to vary
the volume, while the constant power pan law employs a non-linear sine/cosine
curve.

For more reading about pan laws, see: https://www.cs.cmu.edu/~music/icm-
online/readings/panlaws/.

Crossfade trigger
Fades one sound instance in (“Fade in target”) and another out (“Fade out
target”) simultaneously. Duration and constant power behave the same as in
fade triggers.

6

https://www.cs.cmu.edu/~music/icm-online/readings/panlaws/
https://www.cs.cmu.edu/~music/icm-online/readings/panlaws/

Devamp trigger
Make any currently looping slice region stop looping and continue onto the next
slice region. You can use this to loop a section of audio over and over until a
you want to smoothly transition to the rest of the audio. For example, you may
have a bar of music to loop indefinitely while actors speak a block of dialogue,
and to move on to the rest of the music once they finish the dialogue. This is
easily possible with slice points and a devamp trigger.

OSC Trigger
OSC triggers send OSC messages to other programs or devices. OSC, short
for Open Sound Control, is an industry standard protocol that allows dif-
ferent systems to communicate with each other in very high-level ways. It
was originally designed with sound-based applications (such as synthesizers)
in mind, but has many more uses today. You can read more about OSC at:
http://opensoundcontrol.org/.

To make Q2Q send OSC messages to another device, add an OSC trigger to a
cue. You can customize its message parameters within the trigger editor.

Parameters

Address Specifies the address of the address pattern of the message. This can
consist of:

• A simple address, such as /instruments/lead_synth/frequency
• An address containing simple wildcards, such as /instruments/*/frequency

(controlling all instruments’ frequencies from our example synthesizer)
• An address with a more specific wildcard, such as /instruments/{lead_synth,bass}/frequency

(which would control only lead_synth and bass, but not pad).

Arguments Arguments are optional extra data supplied along with the OSC
message. Click the plus (+) button to add arguments, and the (X) button to
remove arguments. Use the datatype dropdown on an argument to change the
argument’s datatypes. Q2Q currently supports the following datatypes:

• String
• Integer
• Float
• Boolean
• Impulse
• None (also known as Nil)

Specifying where OSC messages are sent to

You can tell Q2Q where to send OSC messages in the Network patch window
(either by selecting File>Network Patch... in the menu, or by clicking the

7

http://opensoundcontrol.org/

gear icon in the OSC trigger editor). Edit the host, port, and protocol of the
sending connection to match whatever the other device or program is listening
on. Pay special attention here—nothing will work if the settings are not exactly
correct.

These settings are saved on a per-project basis, not globally.

Examples

Imagine you have an OSC-enabled synthesizer that you want to control from
Q2Q, and it understands the following messages:

Message address Arguments Description
/instruments/lead_synth/frequency float Sets the lead

synth’s
frequency in
Hz

/instruments/lead_synth/volume float Sets the lead
synth’s
volume in dB

/instruments/lead_synth/eq3 float, float, float Sets the lead
synth’s
equalizer
values: low,
mid, and high

/instruments/bass/frequency float Sets the
bass’s
frequency in
Hz

/instruments/bass/volume float Sets the
bass’s volume
in dB

/instruments/bass/eq3 float, float, float Sets the
bass’s
equalizer
values: low,
mid, and high

/instruments/pad/frequency float Sets the pad’s
frequency in
Hz

/instruments/pad/volume float Sets the pad’s
volume in dB

/instruments/pad/eq3 float, float, float Sets the pad’s
equalizer
values: low,
mid, and high

8

Message address Arguments Description
/master/volume float Sets the

master
volume

Before you start adding OSC triggers, you need to properly set Q2Q’s sending
connection to be that of the synthesizer’s listening host and port. If the syn-
thesizer is listening (a.k.a receiving) on port 12345 from a device with an IP of
192.168.0.30, set the host and port of the network patch’s send connection to
those values. If you use Q2Q’s receiving connection, it will not work! Finally,
choose the correct protocol, which will either be TCP or UDP, depending on the
device.

Say you want to build a cue to set the lead_synth’s note. Drag an OSC
trigger into your cue list, and select it for editing. Set the address to
/instruments/lead_synth/frequency. Add a float argument, and set it to
the desired value.

Say you want to build a cue to control all the instruments’ volumes simultaneously.
If you want to set them to the same value, you can use wildcards to acheive
this by setting the address to /instruments/*/volume and the argument to the
desired float value. If, however, you want to use different volumes, you can add
multiple OSC triggers in the same cue for each different instrument volume.

9

Projects
Projects are saved in files with the .q2q extension. Audio files used in the project
are referenced by relative links when possible, so the projects are portable between
machines as long as all audio files used are copied along with the project file.
Thus, it is recommended to keep the project file and all its audio files organized
together in the same folder (and sub-folders), to make transferring between
computers easy. The only time Q2Q has to resort to absolute file links is on
Windows when referencing files across drives - for example, if your project is at
C:\Users\joe-smith\Documents\Q2Q\SomeProject\SomeProject.q2q, while
an audio file used in the project is at D:\SomeAudio.wav.

Exporting Cue Sheets as CSV Files
Project cue sheets can be generated and exported in the CSV (“Comma Separated
Values”) file format with the menu option File>Export>Cue sheet to CSV....
CSV files are a common table-based file format compatible with many programs,
such as Excel. Cue sheets generated in this manner contain Name, Duration,
Triggers, and Notes columns.

10

Automatic cue naming
You can edit a cue’s name by double-clicking on its current name, typing the
new name, and pressing enter.

Q2Q will automatically name cues sequentially if you use some special cue names.
For example, if you name all your cues #, they will display as successive numbers
starting with 1, meaning that a cue list of #, #, # will display as 1, 2, 3. Likewise,
$ will be display with a sequentially incrementing alphabet letter, meaning a
cue list of $, $, $ will be displayed as A, B, C.

You can find a complete description of all possible substitutions below.

You can also specify a project’s default cue naming scheme to use for new cue
creation. This setting is found in the toolbar, in the section labelled “Default
cue name.” You can pick one of the recommended options from the dropdown,
or specify your own be selecting “custom.” New projects will use $ by default.

Substitutions
#

Substitutes a number, incremented from the last number-like cue. Multiple #
symbols will pad the number with additional zeros.

$

Substitutes an alphabetical letter, incremented from the last letter-like cue.
Multiple $ symbols in a row will use that number of letters, similar to the
zero-padding of the numbers, but with some differences. For example, “B” and
“AAAAAB” are considered different cue “numbers”, while “1” and “00001” would
be considered the equal cue numbers.

#n and $n

Adding a number, n, to the end of a \# or \$ sequence, will increment the cue
name by n, instead of the default of 1.

{value}

Displays the contents of the curly braces. If the contents are a number or letter,
cues after this cue it will starting numbering/lettering from that number or
letter, allowing you to skip swaths of numbers/letters.

Examples
Here are some examples of cue list inputs and what their displayed names would
be:

11

Cue list Displayed names
$, $, $ A, B, C
$, $, $, BA, $, $$ AA, AB, AC, BA, BB, BC
$$5, $$5, $$5 AA, AF, AK, AP
#, #, # 1, 2, 3
###, ###, ### 001, 002, 003
###, ###, ###, {101}, ###, ### 001, 002, 003, 101, 102, 103
{000}, ###5, ###5, ###5, ###5 000, 005, 010, 015, 020

12

OSC API
Q2Q can be controlled with OSC from other programs or devices that can
send OSC messages. You can set the host, port, and protocol that Q2Q will
listen for OSC messages over in the Network Patch window under the Receive
connection setting. It is disabled by default.

Q2Q will ignore OSC messages that it does not recognize.

API
Top-level methods

Address
/cue/index/{index}/... Accesses the methods

of a cue at the index
{index}, where 0 is
the first cue in the
cue list, 1 is the
second, and so on.

/cue/{name}/... Accesses the methods
of a cue with the
name {name}.

/cue/armed_prev/.../ Accesses the methods
of the cue right
before the currently
armed one, if
applicable

/cue/armed/... Accesses the methods
of the currently
armed cue.

/cue/armed_next/... Accesses the methods
of the cue right after
the currently armed
one, if applicable

/panic Stops all cues

Cue methods

Address
.../go [] Triggers the cue, as if pressing GO after

arming it
.../arm [] Arms the cue, as if selecting it with the

mouse or arrow keys

13

Examples
• Sending /cue/A/go will trigger the cue named “A”
• Sending /cue/{B,C}/go will trigger the cues named “B” and “C” simulta-

neously
• Sending /cue/index/9/go will trigger the 10th cue in the cue list (remem-

ber that cues are zero-indexed)
• Sending /cue/armed_next/arm will arm the next cue, as if pressing the

down arrow key

14

	Overview
	App layout overview
	Toolbar
	Cue-track grid
	Cue editor
	Trigger editor
	Track editor
	Views
	Command Palette

	Triggers
	Start trigger
	Stop trigger
	Fade trigger
	Crossfade trigger
	Devamp trigger
	OSC Trigger
	Parameters
	Specifying where OSC messages are sent to
	Examples

	Projects
	Exporting Cue Sheets as CSV Files

	Automatic cue naming
	Substitutions
	#
	$
	#n and $n
	{value}

	Examples

	OSC API
	API
	Top-level methods
	Cue methods

	Examples

